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Grid convergence studies for subsonic and transonic flows over airfoils are pre-
sented in order to compare the accuracy of several spatial discretizations for the
compressible Navier—Stokes equations. The discretizations include the following
schemes for the inviscid fluxes: (1) second-order-accurate centered differences with
third-order matrix numerical dissipation, (2) the second-order convective upstream
split pressure scheme (CUSP), (3) third-order upwind-biased differencing with Roe’s
flux-difference splitting, and (4) fourth-order centered differences with third-order
matrix numerical dissipation. The first three are combined with second-order differ-
encing for the grid metrics and viscous terms. The fourth discretization uses fourth-
order differencing for the grid metrics and viscous terms, as well as higher-order
approximations near boundaries and for the numerical integration used to calculate
forces and moments. The results indicate that the discretization using higher-order
approximations for all terms is substantially more accurate than the others, produc-
ing less than two percent numerical error in lift and drag components on grids with
less than 13,000 nodes for subsonic cases and less than 18,000 nodes for transonic
cases. Since the cost per grid node of all of the discretizations studied is comparable,
the higher-order discretization produces solutions of a given accuracy much more
efficiently than the others. © 2000 Academic Press

Key Words:aerodynamics; Navier—Stokes equations; finite-difference methods;
higher-order methods.

1. INTRODUCTION

It is essential that algorithms for the numerical solution of the compressible Navi
Stokes equations be both reliable and efficient, where efficiency is measured in tern
the computational effort required to achieve a given level of accuracy. Most algorithm:
use for steady flows can be divided into two distinct components, a discretization of
spatial derivatives in the governing partial differential equations and an iterative methoc

683

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



684 ZINGG ET AL.

driving the discretized equations to steady state. For this class of algorithms, the accu
of a converged steady solution depends only on the spatial discretization and is indeper
of the iterative method. The nature of the spatial discretization affects the efficiency of
overall algorithm through (1) its computational cost per node per iteration, (2) its accure
i.e., its effect on the number of grid nodes required to achieve a given level of numer
accuracy (independent of physical model error), and (3) its effect on the convergence
of the iterative method and thus the total number of iterations needed to reach ste
state.

The discretization of the inviscid flux terms has received considerable attention. It of
consists of the following components:

1. A discrete approximation of the flux derivatives applicable to scalar flux fun
tions, including a nondissipative skew-symmetric component and a dissipative symme
component.

2. A splitting technigue permitting extension of the dissipative component of tl
approximation to hyperbolic systems of equations. This includes both upwind schemes
inherent dissipation based on flux-vector or flux-difference splitting and central scher
with explicitly added dissipation.

3. Alimiting technique which enforces monotonicity or positivity of specific element
of the solution through appropriate use of a first-order discretization in the vicinity of shc
waves and other unresolved regions of high gradient.

The strategy chosen for adding numerical dissipation in the discretization of the invis
fluxes can have a major impact on the accuracy of the overall spatial discretization. F
difference splitting [22] has become very popular, often in combination with a third-orc
upwind-biased operator and a flux limiter [15, 16]. Allmaras [1] used grid converger
studies to demonstrate the improvement in accuracy associated with the use of a
difference-split upwind scheme over the scalar artificial dissipation scheme of Jame
et al. [12] in the computation of laminar boundary layers. Similarly, Feval. [7] and
others have shown that the matrix artificial dissipation scheme of Swanson and Turkel
is considerably more accurate than the scalar scheme in computing turbulent flows
airfoils. Swansort al.[24] provide a comparison of several numerical dissipation schem
with a focus on the convective upstream split pressure (CUSP) [10, 11, 25] scheme.
results of Nemec and Zingg [18] show that the CUSP scheme is competitive with ma
dissipation in terms of accuracy at a reduced cost.

Modified wavenumber analysis shows that a second-order centered difference apy
imation to a second derivative is roughly twice as accurate as a second-order cen
difference approximation to a first derivative. Hence it is reasonable to assume that a sec
order treatment of the inviscid flux terms might be the most important source of error
a second-order spatial discretization. This motivates the common practice of combini
third-order upwind-biased approximation for the inviscid flux terms with a second-orc
approximation for the viscous fluxes. However, in computations of turbulent flows over
foils, accurate prediction of drag requires low numerical errors in boundary layers, wh
are dominated by a balance between the viscous and inviscid fluxes in the streamwise
mentum equation. Hence it may be worthwhile to raise the accuracy of the viscous tern
well.

The purpose of this paper is to compare the accuracy of four different spatial ¢
cretizations for a range of aerodynamic flows. The first uses matrix artificial dissipat
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together with second-order centered differences. The second usesthe CUSP scheme, a
combination with second-order centered differences. The third discretization is an upw
biased scheme using flux-difference splitting based on the Roe average [22]. These
cretizations use second-order approximations for the grid metrics and the viscous de
tives. The fourth discretization under study is the algorithm of De Rango and Zin
[6], which uses fourth-order centered differences with matrix artificial dissipation for t
convective terms and fourth-order differencing for the grid metrics and viscous tert
Grid convergence studies are used to determine the numerical error produced by
discretization. Such studies provide a reliable means for assessing numerical errc
demonstrated by Zingg [28], and are an important component of the code verifica
process [21]. In the present context, the grid convergence studies provide a thor
and systematic comparison of three popular modern discretizations and a higher-c
approach.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

The spatial discretizations under study are implemented in ARC2D [19], develoj
at the NASA Ames Research Center, which is the basis for the widely used c
OVERFLOW [13]. ARC2D uses a generalized curvilinear coordinate system and the d
onal form [20] of the Beam—Warming approximate factorization algorithm [4] with loc:
time stepping to solve the thin-layer Navier—Stokes equations. With the upwind-biased
tial discretization, convergence to steady state is achieved using the diagonally domi
approximate factorization algorithm in diagonal form of Klopétial. [14] with three sub-
iterations per time step. The effects of turbulence are modelled using the Baldwin—Lor
model [2], and a far-field circulation correction is included at the outer boundary [1
Laminar-turbulent transition points are specified, and the transition is ramped over two
cells.

Governing equations.In two-dimensional generalized coordinates, the thin-laye
Navier—Stokes equations are given by [19]

E + % + E = 3_8’ (1)

at & an an

whereQ=J"1Q=J"1[p, pu, pv, €T is the vector of conservative dependent variable:
E andF are the inviscid flux vector$is the viscous flux vectog, andy are the streamwise
and normal generalized coordinates, respectively, arglthe Jacobian of the coordinate
transformation.

Matrix dissipation scheme.The matrix dissipation scheme [23] is implemented in th
following manner,

IE .
(—) A 8 Ejk — Vedji1ok 2

1 An analogous term appears in thelirection.
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with

A -1 2) (4
dity/zk = |Al 112k 112k (€551/26 06 Qjk — €] 212k Ve Ae Ve Qj k)

](& =oamax ik YTik Vj—1k)

](4& = max(O, Kq4 — eﬁi)

_ IPj+1k — 2Pjk + Pj—1kl
IPj+1k + 2Pjk + Pj—1kl’

whereé; is a centered difference operatay; andV; are first-order forward and backward
difference operators, and, =0.02. We usex, =0 for subsonic flows and, =1.0 for
transonic flows. The ternf; i is a pressure switch to control the use of first-order dissipatic
near shock waves. The mattid| is given by

Al = Te| AT ©)

Here|A;| contains the eigenvalues of the flux Jacobian makixdE /0 Q as

Ul o 0 0
0 U 0 0

[Ag] = . 4)
0 0 |U+co 0
0 0 0  |U-—ocg

whereU is the contravariant velocity component in thdirection,c is the speed of sound,

0 = \%_X + Ey, andé, andé&y are metrics of the curvilinear coordinate transformation. Th
matrix T; contains the right eigenvectors Af In evaluating| A|,+1/2 k we have used the
simple average; the Roe average is recommended for flows containing very strong sl
waves. To avoid zero eigenvalues, the elementa ¢f are modified as

A, A2 = Max(iy 2, Vo)
A3 = max(rs, Vao) )
A4 = max(hg, Vao),
whereo is the spectral radius of the flux Jacobian. We \se V,, = 0 for subsonic flows,
andV, =0.025,V,, = 0.25 for transonic flows.

CUSP scheme.The CUSP scheme[10, 11]is formulated by a combination of differenc
of the state and flux vectors. We consider the ECUSP version only, and refer to it as
CUSP scheme for the remainder of the paper.

For the first-order CUSP scheme, the dissipative flux forétlowordinate direction is
added as in Eq. (2) with

1 1
dJ'+1/2,k = E‘]J+l/2 k“1+1/2 kC(Qj+1k — Qjw) + 2‘]1+1/2 kﬁ1+l/2kE1+l/2 ks (6)

where

AE 4172k = &xjyu (Bjvik — Eji) + &ypam (Fink — Fip)-
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The vectorsE andF are the flux vectors written in Cartesian coordinates. The paramet
o* andp are given by

a*c=ac— AU @)
max(0, Y+-) fo<M=<1
p=14 —max(0,H) if-1<M <0 ®)
sign(M) if IM[ > 1,

where

A =U e, /E2+82

ando is chosen to equaU_|/c. The symboU_ denotes the arithmetic mean contravarian
velocity, while the eigenvaluest are determined at the Roe state.

To construct a higher-order CUSP scheme, limiters are added which activate near
discontinuities. We use the limiter function of Jameson [10], as modified by Nemec :
Zingg [18],

u—v 2
lul + |v| +&/(ul + [v| +10°12) | °

Ru,v) =1 9

where all quantities are nondimensional, with- 10-2. A higher-order CUSP scheme is
obtained by defining the limited average,

L(u, v) = %R(u, V)(U + v) (10)

and then constructing the appropriate left and right states for each variable (where the se
subscript has been dropped for simplicity),

1
qj!'+1/z =0+ EL (ACIj+3/2, ACIj—l/Z)
. (1)
qu+1/2 =+ 5 L (AQj43/2, AQj-1/2).

whereq indicates an element of the vector of conservative variaBleghe dissipative flux
becomes

1 -1 * R L 1 -1 = R L
djy12 = E‘]j+l/2aj+1/2(Qj+1/2 - j+1/2) + EJJ+1/2/3]+1/2AE(Qj+1/2v j+1/2)’ (12)

where

AE(QR12 Qf1102)
= EXJH/Z(E(QF-&-l/Z) - E(Qlj‘_+1/2)) + $YJ+1/2(F(QJR+1/2) -F (QjL+1/2))‘

Analogous terms appear in thelirection.
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Near domain boundaries, it is necessary to modify the left and right states. At the 1
interior node the left state becomes

1
qj!_+1/2 =0+ 5 L (AQj13/2. AQj41/2) (13)

while the right state remains unmodified. At the last interior node, the left state does
require modification, but the right state becomes

1
qu+1/2 =dj+1— > L (ACIJ‘+1/2’ Ac11—1/2)~ (14)

Compared to the simple pressure switch, applying the limiter to each variable a
considerable computational expense to the algorithm. The limiter value has to be comp
for each state variable at each node for each direction (i.e., eight evaluations of the lin
function per node) compared to just two evaluations per node of the pressure switch func
Further, the inversion of the left-hand side of the implicit algorithm becomes less efficit
due to the fact that the limiter may apply different values to each conservation equat
To increase the efficiency of the algorithm we use the same limiter value in each equa
which is based on the pressure. This reduces the computational cost of the limiter to rou
the same level as that of the pressure switch. Nemec and Zingg [18] have shown that
simplification adds very little error for the class of flows considered here.

Upwind-biased schemeThe third-order upwind-biased operator for the inviscid fluxe:
has the following form when applied to a scalar function,

1
8x0j = 5o (-2 — 601 + 30 + 20+2). (15)

This can be written as the sum of a fourth-order skew-symmetric component and a tt
order symmetric component as

1
xQj = m[(—QHZ +80j+1 — 80j-1 +0dj—2)
+ (@j+2 — 4dj+1 + 6d; — 4dj-1 + Qj-2)]. (16)

Hence it is equivalent to a fourth-order centered scheme with a third-order dissipa
component. This is implemented using Roe’s flux difference splitting with an entropy f
A limited extrapolation of the primitive variables is used to calculate the necessary left :
right states. For example,

. 1 /1 2
Pivya = Pi+ 5¥i( VeI + 380
17)
R 1. /2 1
P12 =P+ 5Vi| VeI + 3805 )

whereVp; = pj — pj—1, Apj = pj+1— pj, andW¥ is a limiter function. Note that second-
order approximations of the grid metric terms are used in the present implementatio
this scheme.
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We use the limiter function of Koren [15, 16] with the modification proposed b
Venkatakrishnan [27], which can be written for thélirection as

0 3Vp;Apj + (K 6)3
17 2(Ap;) — Vpj)2+3Vpj Apj + (K 6)3

(18)
W = max©, ¥)),

wheref = \s"éf + Eyz, and we have usel =5. This value ofK was selected as a compro-
mise between conflicting requirements of accuracy, convergence, and monaotonicity. Le
values ofK lead to oscillations near shocks, while smaller values result in excessive us
the first-order scheme, causing large numerical error and poor convergence. Similar re
are obtained using the limiter function of Van Albaetzal. [26].

Higher-order algorithm. The higher-order algorithm uses the following operators t
approximate first derivatives [6]:

Interior (4th order)

1
8xQj = m(—qszLSqu—8qj,1+quz); (19)
First interior node (3rd order)
1
540 = g5 (—20j-1— 30; +60j41— 0 12); (20)
Boundary (3rd order)
8x0y = 5, (—110; + 18011 — 90j42 + 2043). (21)

The last equation is required only for the calculation of grid metrics. Elsewhere, the ¢
metrics are evaluated using the same operators as the inviscid fluxes without nume
dissipation.

The numerical dissipationis added as described inthe earlier section on matrix dissipa
Itrequires the same five-point stencil as the fourth-order centered-difference operator ar
the absence of discontinuities, is third-order accurate. At near-boundary nodes, the follo
operator is used,

1
H(_qj—l—i_qu —3dj+1+ Gj+2)- (22)
The viscous terms are in the general form

Ox(ajdxBj). (23)

The following fourth-order expression is used to calculatediis term at half nodes,

1
6xB)j+1/2 = m(ﬂj—l — 278 + 27Bj11 — Bj+2)- (24)

Near boundaries, the following third-order expression is used,

1
(6xB)j+1/2 = m(—23ﬁj + 21841 + 3Bj+2 — Bj+3)- (25)
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The value olxj,1/2 in EQ. (23) is determined using the fourth-order interpolation formul
1
Ajy12 = 1—6(—Olj_1+9otj +9Olj+1—01j+2). (26)
Near boundaries, a third-order formula is used,
1
@jry2 = g3 + 6tji1 — @ji2). (27)
The complete operator is then

1
Sx(@j8xBj) = = [aj_3/2(8xB)j-3/2 — 2Tatj_1/2(8xB) -1/2

T 24AX
+ 270t 11/2(8x B) j+1/2 — @j+3/2(8xB) j +3/2] (28)
in the interior, and
Sx(ajdxBj) = 2AAX [—230tj_1/2(8xB)j-1/2 + 21t 41/2(8xB) j+1/2

+ 30t 1.3/2(8xB) j+3/2 — @j+5/2(8xB)j+5/2] (29)

near boundaries. The implementation of the Baldwin—Lomax turbulence model requires
calculation of the vorticity at half nodes. This is accomplished using the operators givel
Egs. (24) and (25).

The value ofQ at a far-field boundary node is calculated as [3]

A 1 . N 1. .~ 4 N
ch = E(ro + Qext) - E 5|gn(A)(Qoo - Qext) (30)
sign(A) = T, sign(A, )T, ™, (31)

wherex is chosenin the direction normal to the boundbgyndicates the boundary valusy
indicates values obtained from free-stream conditionseatiddicates values extrapolated
from the interior nodes of the mesh. The eigenvalues and eigenvectors are calculated
the mean stateQavg= 2(Qx + Qex. The following second-order extrapolation operatol
is used at the far-field boundary,

Qj = 3dj+1 — 3dj+2 + Jj3. (32)

The pressure at the airfoil surface is determined from a third-order approximatior
ap/oan =0, which gives

1
pL= ﬁ(18p2 —9p3 + 2py). (33)

For an adiabatic walh T /an = 0, and, when coupled with the assumption of zero pressu
gradient and the perfect gas law, this impligs’on = 0. Hence the density at the airfoil
surface is determined from an expression analogous to Eq. (33). Note that the assum
thatdap/on=0 is not strictly correct. However, for aerodynamic flows at high Reynolc
numbers, the error introduced is very small. We have experimented with extrapolatiol
pressure with no significant change in the solution. Furthermore, the error introduced is 1
ordered [21], and hence does not affect the conclusions from grid convergence stud
The velocity is zero on the body surface.

2Meaning that the error introduced does not vanish as the grid spacing tends to zero. Such an error can
evaluated through grid convergence studies.
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For grids with a “C” topology, which are used exclusively in this study, the interpolation
the wake-cut\c) is computed to fourth-order using the data above and below the wake-cu

(= Okyer2 + et 1 + AOkye—1 — Olkyo—2) - (34)

ol

Okoe =

In order to preserve the accuracy provided by a higher-order solution, it is neces
to use a higher-order integration technique in calculating forces and moments. Thi
accomplished by fitting a cubic spline to the airfoil coordinates and the surface pressure
skin friction distributions. An adaptive quadrature routine based on the two-point Gau
Legendre rule with a global error control strategy is then used to perform the integration

Overall, other than the first-order numerical dissipation added near shock waves, tl
approximations are all consistent with third-order global accuracy in space. However,
not clear that this can actually be achieved in the presence of grid and flow singularitie

3. TEST CASES AND GRIDS
We consider the following four test cases:

1. NACA 0012 airfoil, M., =0.16, & = 6°, Re= 2.88 x 10°, laminar-turbulent tran-
sition at 0.05 and 0.8 chords on the upper and lower surfaces, respectively.

2. NACA 0012 airfoil, Mo, =0.16, = 12°, Re=2.88 x 1(f, laminar-turbulent tran-
sition at 0.01 and 0.95 chords on the upper and lower surfaces, respectively.

3. NACA 0012 airfoil, My, = 0.7, = 3°, Re= 9.0 x 10°, laminar-turbulent transition
at 0.05 chords on both surfaces.

4. RAE 2822 airfoil, Mo = 0.729,e = 2.31°, Re= 6.5 x 10°, laminar-turbulent tran-
sition at 0.03 chords on both surfaces.

These cases span a range of typical aerodynamic flows. Case 1 is a fully attached suk
flow, while Case 2 has a region of separated flow near the trailing edge on the upper sur
Cases 3 and 4 are transonic flows with shock waves of moderate strength on the
surface. The transonic cases are from Holst [9]. Experimental data for Case 4 can be f
in Cook et al. [5] The measured coordinates for the RAE 2822 airfoil are used, as
Maksymiuket al.[17], rather than the standard coordinates. Experimental data for Cast
and 2 can be found in Gregory and O’Reilly [8].

Table | is a summary of the grids used. All of the grids have a “C” topology. The distar
to the far-field boundary is 12 chords for all grids. While this is clearly a source offerr
[28] it is not adiscretizatiorerror, and hence will not affect our conclusidhall grids were
generated using an elliptic grid generator, such that the largest distance between nod
grid A is one chord (near the far-field boundary). Grid B was generated by removing ev
second node in both coordinate directions from grid A, and grid C was similarly genere
from grid B. This technique produces a sequence of grids suitable for a grid converge
study. We also show results for grid C2, which has additional grid nodes clustered nea
upper-surface shock wave for Cases 3 and 4. Grids C and C2 have a practical node de
with under 14,000 nodes. Grids A and B are primarily for estimation of solution error.

3 The error incurred varies with the inverse of the distance to the outer boundary [21].
4 For accurate prediction of drag at high-lift conditions, a substantially larger distance to the far-field bount
is recommended [28].
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TABLE |
Summary of Grids

Leading edge Trailing edge
Off-wall spacing clustering clustering
Grid Dimensions Points on airfoil X1075) (x1073) (x1073)
A 1057x 193 801 0.23 0.1 0.5
B 529x 97 401 0.53 0.2 1.0
C 265x 49 201 1.2 0.4 2.0
c2 277x 49 213 1.2 0.4 2.0

4. RESULTS AND DISCUSSION

The lift, pressure drag, and friction drag coefficients for the four test cases compute
grids A, B, and C are shown in Figs. 1-4. They are plotted vergtls WhereN is the
number of grid nodes. The discretizations are labelled as follows:

1. Matrix, matrix artificial dissipation with second-order centered differences;

2. CUSPR, CUSP scheme;

3. Roe third-order upwind-biased scheme for the inviscid terms with second-orc
centered differences for the viscous terms;

4. Higher-order, matrix artificial dissipation with fourth-order centered difference:
for the inviscid and viscous terms.

It is important to note that the higher-order discretization uses the same numerical d
pation scheme as the second-order discretization labelled “Matrix.” For the second-o
discretization, the truncation error from the second-order centered difference approxi
tions to the inviscid and viscous flux terms is of lower order than the third-order numeri
dissipation. For the higher-order scheme, the third-order numerical dissipation is the lea
error term in the interior discretization. Finally, the first-order numerical dissipation is r
used for the subsonic cases. With the matrix dissipation scheme, this is accomplishe
settingk, = 0; with the CUSP and Roe schemes, the limiters are turned off.

All four discretizations produce very similar results on grid A, as expected. Hence
grid A results provide a reference solution for estimating the numerical error on grid
A reasonable goal is to achieve a numerical error in lift and drag components of less 1
two percent on grid C. One might argue that this is unnecessarily stringent, given
errors in drag associated with modelling of laminar-turbulent transition and turbulence
be significantly greater than two percent. However, we would like the numerical error
be substantially less than the physical model error, both to permit accurate assessme
physical model error and to avoid compounding these errors.

With a few exceptions, the numerical errors in the lift coefficient are below two perce
on grid C. All of the methods appear to be roughly equally accurate. Closer inspectiol
the pressure distributions shows that this is not the case, as we shall see later. The err
the drag components computed on grid C are much larger. In order to get a true pictul
solution accuracy, it is important to examine the individual drag components, pressure,
friction drag, since the errors in these components are often of opposite sign. For the
subsonic cases, shown in Figs. 1 and 2, the errors in pressure, and friction drag produc
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FIG.5. Boundary layer velocity profiles on the upper surface at 85% chord, Case 2.

the higher-order scheme on grid C are consistently below two percent and are significe
smaller than those produced by the other three schemes. In fact, the errors produc
the higher-order scheme on grid C are generally smaller than those produced by the
schemes on grid B, which has four times as many nodes.

One cannotdraw any general conclusions from these figures with respectto the asymy
behavior of the error of the various discretizations. In principle, a second-order discret
tion will produce a linear variation of the force coefficients with\L Although some of
the figures, such as the pressure drag for the subsonic cases, suggest second-order ¢
gence rather strongly, others clearly do not. Furthermore, there is no concrete evidenc
the higher-order algorithm leads to a higher-order asymptotic convergence rate in the |
ence of the trailing edge singularity. Hence our emphasis is on the actual error obtaine
grid C, as determined by comparison with grid A. With this criterion, the benefits of t
higher-order discretization are substantial.

Figure 5 shows the boundary-layer velocity profiles at 85% chord on the upper surf
for Case 2 computed on grid C. The grid A resdlighich provide an accurate reference
solution, show every fourth grid node. The higher-order scheme is superior to the o
schemes, with very little error even on grid C. It achieves a low numerical error desj
using the same numerical dissipation scheme as is used by the matrix scheme, demons
that the third-order numerical dissipation is not a major source of error on grid C. Hel
the numerical dissipation scheme is achieving its goal of producing stability and damg
under-resolved modes without introducing significant error.

For the transonic cases, shown in Figs. 3 and 4, the higher-order discretization prod
the smallest pressure drag error on grid C, butitis nevertheless well in excess of two per
One source of this error is the first-order dissipation introduced near the shock wave
of the schemes produce lower pressure drag errors when run without any limiting,
without any first-order dissipation, but visible oscillations result at the shock, and algorit
robustness can be compromised. Another possible source of error with the matrix dissip:

50n grid A, the various discretizations produce solutions which are indistinguishable on the scale shown.
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FIG. 6. Pressure coefficient for Case 4.

scheme (thus affecting the higher-order algorithm) is the requirement of nonzero value
V, andV, in Eqg. (4) for transonic flows. However, given that the error in friction dras
obtained using the higher-order discretization is very small, consistent with the subs
cases, it is unlikely that the nonzero valuesvpfandV, are contributing significantly to
the error in pressure drag. Adding nodes near the shock, as in grid C2, does not re
the pressure drag error significantly. We will see later that adding grid nodes in the nor
direction, possibly in order to better resolve the small separation bubbles seen at the sh
is more critical for these cases. Figure 6 shows details of the pressure coefficient or
upper surface of the airfoil for Case 4 computed on grid C2. For the grid A solution, ev
second grid point is plotted. The higher-order discretization produces a significant reduc
in error over the first 20% chord.

Figure 7 shows the values of the Koren limiter, Eq. (17), and the Nemec—Zingg modifi
tion of the Jameson limiter, Eq. (9), for Case 4, grid C. In both cases, the limiter is primal
active only near the upper-surface shock, as desired, although the Koren limiter is trigg
slightly near the leading and trailing edges. In general, it is a worthwhile exercise to gene
such plots in order to verify that appropriate parameter values have been selected. Fc
ample, as the value & is reduced in Eq. (17), the limiter begins to trigger in many region
far from the shock wave, and hence the solution becomes polluted by excessive first-c
dissipation. A theoretical basis for determinikgwould be of significant benefit.

For the subsonic cases, the higher-order algorithm generally produces a numerical
of less than two percent in the lift, pressure drag, and friction drag coefficients on grid
which has 12,985 nodes. However, for the transonic cases, the error in the pressure
exceeds two percenton grid C. We now revisit the transonic cases using an additional fa
of grids (designated A3, B3, and C3), generated in the same manner as the previous
whose properties are summarized in Table Il. These grids are designed specifically fo
transonic cases, with increased node density in the normal direction and more nodes ¢
upper surface than the lower surface (but no clustering at the shock). Grid C3 has 17
nodes, which is 35% more than grid C, but far fewer than grid B. Furthermore, for all of 1
discretizations, we add the first-order numerical dissipation at the shock in the stream:
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FIG.7. (a) Limiter values for Case 4, Koren limiter. (b) Limiter values for Case 4, Nemec—Zingg modificati
of Jameson limiter.

direction only, which also reduces the errors. The results achieved on grid A3 are very C
to those on grid A, providing further evidence that the numerical error is very small on si
dense grids. Tables Ill and IV show the lift, pressure drag, and friction drag coefficie
computed using grid C3 for Cases 3 and 4, respectively. In addition, the tables show

TABLE Il
Additional Grids for Transonic Cases

Leading edge Trailing edge
Off-wall spacing clustering clustering
Grid Dimensions Points on airfoil X107°) (x107%) (x107%)
A3 1073x 257 849 0.23 0.1 0.25
B3 537x 129 425 0.53 0.2 0.5
C3 269x 65 213 1.2 0.4 1.0
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TABLE Il
Errors for Case 3, Grid C3

Algorlth m C| %C| Cdp %Cdp Cdf %Cdf
Matrix 0.5135 0.7 0.009058 5.2 0.004776 4.0
CUSP 0.5053 0.9 0.008885 3.2 0.004714 5.2
Roe 0.5078 0.4 0.008772 1.9 0.004723 5.0
Higher-order 0.5122 0.4 0.008719 1.3 0.004970 0.06

Note.The columns labelled % show the magnitude of the percent error relative to the values computed u
the higher-order algorithm on grid A3, which &= 0.5100,Cy, = 0.008609,C,, = 0.004973.

magnitude of the percent error relative to the higher-order results computed on grid
which are given in the figure captions. The higher-order algorithm produces much less:
2% error in all quantities, while the other algorithms produce errors between 3 and 5%
the drag components.

In order to examine the relative importance of the higher-order treatment of the visc
fluxes, we have run the higher-order algorithm with lower-order viscous terms. Althou
the results vary from case to case, the higher-order viscous terms generally accour
roughly 10% of the error reduction associated with the higher-order discretization rela
to the second-order scheme with matrix dissipation. For the friction drag in the transc
cases, the contribution from the higher-order viscous terms is over 25%. Using case 2
example, the second-order matrix algorithm produces an error in pressure drag on grid
roughly 47% in comparison with the grid A solution. Using the higher-order algorithm, tt
error is reduced to 1.3%. If lower-order approximations are used for the viscous terms,
error increases to 4.6%. Although the higher-order viscous terms account for a relati
small fraction of the overall error reduction, they reduce the error by a factor greater tl
three in this example.

In the higher-order algorithm, the treatment of the inviscid terms, including the g
metrics, accounts for the largest portion of the error reduction. The present implemente
of the third-order upwind scheme does not produce comparable benefits, largely bec
second-order approximations are used for the grid metrics. Our results indicate that fol
order metric approximations should be used with the third-order scheme, consistent
the fact that the skew-symmetric portion of the third-order upwind-biased operator i
fourth-order centered difference operator. The higher-order grid metrics and first-deriva

TABLE IV
Errors for Case 4, Grid C3

Algorlth m C %C, Cdp %Cdp Cdf %Cdf
Matrix 0.7984 0.4 0.008863 5.2 0.005019 3.8
CUSP 0.7886 1.6 0.008718 35 0.004978 4.6
Roe 0.7979 0.4 0.008754 3.9 0.004988 4.4
Higher-order 0.8023 0.1 0.008517 1.1 0.005223 0.1

Note.The columns labelled % show the magnitude of the percent error relative to the values computed u
the higher-order algorithm on grid A3, which &g= 0.8013,Cy, = 0.008425,C,, = 0.005217.
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grid C.

approximation used in calculating the velocity derivative at the surface also account for nr
of the reduction in friction drag error. The second-order three-point one-sided differe
operator typically used is particularly susceptible to error from grid stretching.

Finally, we consider the cost of the various discretizations studied. In terms of the nun
of iterations required to achieve a steady state on grid C, the discretizations perform simil
with some variation from case to case, as shown in Fig. 8. All cases are converged to w
plotting accuracy for all results shown. In cases where the residual does not reach ma
zero, the cause is either the turbulence mbdethe limiter! Table V shows the relative cost
of a single evaluation of the right-hand side for each discretization, excluding the bound
condition calculation. The first column shows the relative cost for a subsonic case, while
second column shows a transonic case, with the results for the matrix scheme norma
to unity in each case. Although these relative costs should not be considered defin
(with more effort, each algorithm could be programmed more efficiently), they provide
rough indication which is consistent with expectations. The higher-order algorithm cc

5 If the turbulence model is frozen, full convergence is obtained.
" Freezing the limiter produces convergence to machine zero.
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TABLE V
Relative Cost of a Right-Hand-Side Evaluation

Algorithm Subsonic Transonic
Matrix 1 1
CUSP 0.80 0.83
Roe 1.13 1.32
Higher-order 1.06 1.06

only 6% more than the lower-order algorithm with matrix dissipation. The high cost of t
Roe scheme for the transonic case is associated with the use of a separate limiter for
variable, which can be avoided for the cases considered here. The differences in cos
iteration are somewhat smaller than those for a right-hand-side evaluation, since the ¢
and solution of the left-hand-side is roughly equivalent for each algorithm. Overall, the
cost differences per right-hand-side evaluation are quite small, and since the higher-c
algorithm produces equivalent accuracy on a grid with several times fewer nodes, its ovi
computational expense needed to achieve a given level of accuracy is by far the least
schemes considered.

5. CONCLUSIONS

Detailed grid convergence studies have been performed in order to compare the acct
of several modern spatial discretizations, specifically in the context of subsonic and trans
turbulent flows over airfoils. The following conclusions can be drawn from the results:

1. The presentimplementation of the third-order upwind-biased scheme for the in
cid fluxes produces little improvement over the second-order schemes. The results ind
that fourth-order approximations of grid metric terms should be used with the third-or
upwind-biased scheme.

2. Matrix dissipation, the CUSP scheme, and flux-difference splitting all lead to co
parable accuracy. When coupled with second-order schemes, the numerical dissip
introduced using these approaches is not a major source of error. This is clearly sh
by the accuracy of the higher-order algorithm, which includes the same matrix numer
dissipation as the second-order matrix algorithm studied.

3. The accuracy associated with the popular approach to flux limiting exemplifi
by the Koren limiter is highly dependent on a parameter introduced to prevent exces
triggering of the limiter. Depending on the choice of this parameter, too much or too lit
limiting can be obtained. We have suggested a value for this parameter which is optima
the two transonic cases considered, but itis not known whether this value is optimal for o
flow cases and grids. Similar comments apply to the approach used in the Nemec—Z
modification of the Jameson limiter, but it is less sensitive to the value of the paramete

4. Using the higher-order discretization, less than 2% numerical error in lift and di
components can be obtained on grids with less than 13,000 nodes for subsonic case
less than 18,000 nodes for transonic cases. Since the cost of the higher-order discretiz
per grid node is comparable to that of the other discretizations, it is capable of produ
accurate solutions with a substantial reduction in computing expense.
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Once the numerical error is reduced to below 2% on practical grids, one must ¢

serious consideration to other sources of error, including the thin-layer approximation
the treatment of laminar-turbulent transition. Finally, it would be interesting to see |

re

lative accuracy of discretizations for unstructured grids assessed using grid converg

studies similar to those presented here.
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