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Grid convergence studies for subsonic and transonic flows over airfoils are pre-
sented in order to compare the accuracy of several spatial discretizations for the
compressible Navier–Stokes equations. The discretizations include the following
schemes for the inviscid fluxes: (1) second-order-accurate centered differences with
third-order matrix numerical dissipation, (2) the second-order convective upstream
split pressure scheme (CUSP), (3) third-order upwind-biased differencing with Roe’s
flux-difference splitting, and (4) fourth-order centered differences with third-order
matrix numerical dissipation. The first three are combined with second-order differ-
encing for the grid metrics and viscous terms. The fourth discretization uses fourth-
order differencing for the grid metrics and viscous terms, as well as higher-order
approximations near boundaries and for the numerical integration used to calculate
forces and moments. The results indicate that the discretization using higher-order
approximations for all terms is substantially more accurate than the others, produc-
ing less than two percent numerical error in lift and drag components on grids with
less than 13,000 nodes for subsonic cases and less than 18,000 nodes for transonic
cases. Since the cost per grid node of all of the discretizations studied is comparable,
the higher-order discretization produces solutions of a given accuracy much more
efficiently than the others. c© 2000 Academic Press
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higher-order methods.

1. INTRODUCTION

It is essential that algorithms for the numerical solution of the compressible Navier–
Stokes equations be both reliable and efficient, where efficiency is measured in terms of
the computational effort required to achieve a given level of accuracy. Most algorithms in
use for steady flows can be divided into two distinct components, a discretization of the
spatial derivatives in the governing partial differential equations and an iterative method for
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driving the discretized equations to steady state. For this class of algorithms, the accuracy
of a converged steady solution depends only on the spatial discretization and is independent
of the iterative method. The nature of the spatial discretization affects the efficiency of the
overall algorithm through (1) its computational cost per node per iteration, (2) its accuracy,
i.e., its effect on the number of grid nodes required to achieve a given level of numerical
accuracy (independent of physical model error), and (3) its effect on the convergence rate
of the iterative method and thus the total number of iterations needed to reach steady
state.

The discretization of the inviscid flux terms has received considerable attention. It often
consists of the following components:

1. A discrete approximation of the flux derivatives applicable to scalar flux func-
tions, including a nondissipative skew-symmetric component and a dissipative symmetric
component.

2. A splitting technique permitting extension of the dissipative component of the
approximation to hyperbolic systems of equations. This includes both upwind schemes with
inherent dissipation based on flux-vector or flux-difference splitting and central schemes
with explicitly added dissipation.

3. A limiting technique which enforces monotonicity or positivity of specific elements
of the solution through appropriate use of a first-order discretization in the vicinity of shock
waves and other unresolved regions of high gradient.

The strategy chosen for adding numerical dissipation in the discretization of the inviscid
fluxes can have a major impact on the accuracy of the overall spatial discretization. Flux-
difference splitting [22] has become very popular, often in combination with a third-order
upwind-biased operator and a flux limiter [15, 16]. Allmaras [1] used grid convergence
studies to demonstrate the improvement in accuracy associated with the use of a flux-
difference-split upwind scheme over the scalar artificial dissipation scheme of Jameson
et al. [12] in the computation of laminar boundary layers. Similarly, Frewet al. [7] and
others have shown that the matrix artificial dissipation scheme of Swanson and Turkel [23]
is considerably more accurate than the scalar scheme in computing turbulent flows over
airfoils. Swansonet al.[24] provide a comparison of several numerical dissipation schemes
with a focus on the convective upstream split pressure (CUSP) [10, 11, 25] scheme. The
results of Nemec and Zingg [18] show that the CUSP scheme is competitive with matrix
dissipation in terms of accuracy at a reduced cost.

Modified wavenumber analysis shows that a second-order centered difference approx-
imation to a second derivative is roughly twice as accurate as a second-order centered
difference approximation to a first derivative. Hence it is reasonable to assume that a second-
order treatment of the inviscid flux terms might be the most important source of error in
a second-order spatial discretization. This motivates the common practice of combining a
third-order upwind-biased approximation for the inviscid flux terms with a second-order
approximation for the viscous fluxes. However, in computations of turbulent flows over air-
foils, accurate prediction of drag requires low numerical errors in boundary layers, which
are dominated by a balance between the viscous and inviscid fluxes in the streamwise mo-
mentum equation. Hence it may be worthwhile to raise the accuracy of the viscous terms as
well.

The purpose of this paper is to compare the accuracy of four different spatial dis-
cretizations for a range of aerodynamic flows. The first uses matrix artificial dissipation
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together with second-order centered differences. The second uses the CUSP scheme, again in
combination with second-order centered differences. The third discretization is an upwind-
biased scheme using flux-difference splitting based on the Roe average [22]. These dis-
cretizations use second-order approximations for the grid metrics and the viscous deriva-
tives. The fourth discretization under study is the algorithm of De Rango and Zingg
[6], which uses fourth-order centered differences with matrix artificial dissipation for the
convective terms and fourth-order differencing for the grid metrics and viscous terms.
Grid convergence studies are used to determine the numerical error produced by each
discretization. Such studies provide a reliable means for assessing numerical error, as
demonstrated by Zingg [28], and are an important component of the code verification
process [21]. In the present context, the grid convergence studies provide a thorough
and systematic comparison of three popular modern discretizations and a higher-order
approach.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

The spatial discretizations under study are implemented in ARC2D [19], developed
at the NASA Ames Research Center, which is the basis for the widely used code
OVERFLOW [13]. ARC2D uses a generalized curvilinear coordinate system and the diag-
onal form [20] of the Beam–Warming approximate factorization algorithm [4] with local
time stepping to solve the thin-layer Navier–Stokes equations. With the upwind-biased spa-
tial discretization, convergence to steady state is achieved using the diagonally dominant
approximate factorization algorithm in diagonal form of Klopferet al. [14] with three sub-
iterations per time step. The effects of turbulence are modelled using the Baldwin–Lomax
model [2], and a far-field circulation correction is included at the outer boundary [19].
Laminar-turbulent transition points are specified, and the transition is ramped over two grid
cells.

Governing equations. In two-dimensional generalized coordinates, the thin-layer
Navier–Stokes equations are given by [19]

∂ Q̂

∂t
+ ∂ Ê

∂ξ
+ ∂ F̂

∂η
= ∂ Ŝ

∂η
, (1)

whereQ̂= J−1Q= J−1[ρ, ρu, ρv,e]T is the vector of conservative dependent variables,
Ê andF̂ are the inviscid flux vectors,̂Sis the viscous flux vector,ξ andη are the streamwise
and normal generalized coordinates, respectively, andJ is the Jacobian of the coordinate
transformation.

Matrix dissipation scheme.The matrix dissipation scheme [23] is implemented in the
following manner,1

(
∂ Ê

∂ξ

)
j,k

≈ δξ Ê j,k −∇ξdj+1/2,k (2)

1 An analogous term appears in theη direction.
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with

dj+1/2,k = |Â| j+1/2,k J−1
j+1/2,k

(
ε
(2)
j+1/2,k1ξ Qj,k − ε(4)j+1/2,k∇ξ1ξ∇ξ Qj,k

)
ε
(2)
j,k = κ2 max(ϒ j+1,k, ϒ j,k, ϒ j−1,k)

ε
(4)
j,k = max

(
0, κ4− ε(2)j,k

)
ϒ j,k = |pj+1,k − 2pj,k + pj−1,k|

|pj+1,k + 2pj,k + pj−1,k| ,

whereδξ is a centered difference operator,1ξ and∇ξ are first-order forward and backward
difference operators, andκ4= 0.02. We useκ2= 0 for subsonic flows andκ2= 1.0 for
transonic flows. The termϒ j,k is a pressure switch to control the use of first-order dissipation
near shock waves. The matrix|Â| is given by

|Â| = Tξ |3ξ |T−1
ξ . (3)

Here|3ξ | contains the eigenvalues of the flux Jacobian matrixÂ= ∂ Ê/∂ Q̂ as

|3ξ | =


|U | 0 0 0

0 |U | 0 0

0 0 |U + cθ | 0

0 0 0 |U − cθ |

, (4)

whereU is the contravariant velocity component in theξ direction,c is the speed of sound,
θ = !WWWξ2

x + ξ2
y , andξx andξy are metrics of the curvilinear coordinate transformation. The

matrix Tξ contains the right eigenvectors ofÂ. In evaluating|Â| j+1/2,k we have used the
simple average; the Roe average is recommended for flows containing very strong shock
waves. To avoid zero eigenvalues, the elements of|3|ξ are modified as

λ̃1, λ̃2 = max(λ1,2,Vlσ)

λ̃3 = max(λ3,Vnσ) (5)

λ̃4 = max(λ4,Vnσ),

whereσ is the spectral radius of the flux Jacobian. We useVl =Vn= 0 for subsonic flows,
andVl = 0.025,Vn= 0.25 for transonic flows.

CUSP scheme.The CUSP scheme [10, 11] is formulated by a combination of differences
of the state and flux vectors. We consider the ECUSP version only, and refer to it as the
CUSP scheme for the remainder of the paper.

For the first-order CUSP scheme, the dissipative flux for theξ coordinate direction is
added as in Eq. (2) with

dj+1/2,k = 1

2
J−1

j+1/2,kα
?
j+1/2,kc(Qj+1,k − Qj,k)+ 1

2
J−1

j+1/2,kβ j+1/2kÊ j+1/2,k, (6)

where

1Ê j+1/2,k = ξxj+1/2,k(Ej+1,k − Ej,k)+ ξyj+1/2,k(Fj+1,k − Fj,k).
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The vectorsE andF are the flux vectors written in Cartesian coordinates. The parameters
α? andβ are given by

α?c = αc− βŪ (7)

β =


max

(
0, Ū+λ−

Ū−λ−
)

if 0 ≤ M ≤ 1

−max
(
0, Ū+λ+

Ū−λ+
)

if −1≤ M < 0

sign(M) if |M | > 1,

(8)

where

λ± = U ± c
√
ξ2

x + ξ2
y

andα is chosen to equal|Ū |/c. The symbolŪ denotes the arithmetic mean contravariant
velocity, while the eigenvaluesλ± are determined at the Roe state.

To construct a higher-order CUSP scheme, limiters are added which activate near flow
discontinuities. We use the limiter function of Jameson [10], as modified by Nemec and
Zingg [18],

R(u, v) = 1−
∣∣∣∣ u− v
|u| + |v| + ε/(|u| + |v| + 10−12)

∣∣∣∣2 , (9)

where all quantities are nondimensional, withε= 10−3. A higher-order CUSP scheme is
obtained by defining the limited average,

L(u, v) = 1

2
R(u, v)(u+ v) (10)

and then constructing the appropriate left and right states for each variable (where the second
subscript has been dropped for simplicity),

qL
j+1/2 = qj + 1

2
L
(
1qj+3/2,1qj−1/2

)
(11)

qR
j+1/2 = qj+1− 1

2
L
(
1qj+3/2,1qj−1/2

)
,

whereq indicates an element of the vector of conservative variablesQ. The dissipative flux
becomes

dj+1/2 = 1

2
J−1

j+1/2α
?
j+1/2

(
QR

j+1/2− QL
j+1/2

)+ 1

2
J−1

j+1/2β j+1/21Ê
(
QR

j+1/2, QL
j+1/2

)
, (12)

where

1Ê
(
QR

j+1/2, QL
j+1/2

)
= ξxj+1/2

(
E
(
QR

j+1/2

)− E
(
QL

j+1/2

))+ ξyj+1/2

(
F
(
QR

j+1/2

)− F
(
QL

j+1/2

))
.

Analogous terms appear in theη direction.
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Near domain boundaries, it is necessary to modify the left and right states. At the first
interior node the left state becomes

qL
j+1/2 = qj + 1

2
L
(
1qj+3/2,1qj+1/2

)
(13)

while the right state remains unmodified. At the last interior node, the left state does not
require modification, but the right state becomes

qR
j+1/2 = qj+1− 1

2
L
(
1qj+1/2,1qj−1/2

)
. (14)

Compared to the simple pressure switch, applying the limiter to each variable adds
considerable computational expense to the algorithm. The limiter value has to be computed
for each state variable at each node for each direction (i.e., eight evaluations of the limiter
function per node) compared to just two evaluations per node of the pressure switch function.
Further, the inversion of the left-hand side of the implicit algorithm becomes less efficient
due to the fact that the limiter may apply different values to each conservation equation.
To increase the efficiency of the algorithm we use the same limiter value in each equation,
which is based on the pressure. This reduces the computational cost of the limiter to roughly
the same level as that of the pressure switch. Nemec and Zingg [18] have shown that this
simplification adds very little error for the class of flows considered here.

Upwind-biased scheme.The third-order upwind-biased operator for the inviscid fluxes
has the following form when applied to a scalar function,

δxqj = 1

61x
(qj−2− 6qj−1+ 3qj + 2qj+1). (15)

This can be written as the sum of a fourth-order skew-symmetric component and a third-
order symmetric component as

δxqj = 1

121x
[(−qj+2+ 8qj+1− 8qj−1+ qj−2)

+ (qj+2− 4qj+1+ 6qj − 4qj−1+ qj−2)]. (16)

Hence it is equivalent to a fourth-order centered scheme with a third-order dissipative
component. This is implemented using Roe’s flux difference splitting with an entropy fix.
A limited extrapolation of the primitive variables is used to calculate the necessary left and
right states. For example,

ρL
j+1/2 = ρ j + 1

2
9 j

(
1

3
∇ρ j + 2

3
1ρ j

)
(17)

ρR
j−1/2 = ρ j + 1

2
9 j

(
2

3
∇ρ j + 1

3
1ρ j

)
,

where∇ρ j = ρ j − ρ j−1, 1ρ j = ρ j+1− ρ j , and9 is a limiter function. Note that second-
order approximations of the grid metric terms are used in the present implementation of
this scheme.
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We use the limiter function of Koren [15, 16] with the modification proposed by
Venkatakrishnan [27], which can be written for theξ direction as

9̃ j = 3∇ρ j1ρ j + (K θ)3

2(1ρ j −∇ρ j )2+ 3∇ρ j1ρ j + (K θ)3

(18)

9 j = max(0, 9̃ j ),

whereθ = !WWWξ2
x + ξ2

y , and we have usedK = 5. This value ofK was selected as a compro-
mise between conflicting requirements of accuracy, convergence, and monotonicity. Larger
values ofK lead to oscillations near shocks, while smaller values result in excessive use of
the first-order scheme, causing large numerical error and poor convergence. Similar results
are obtained using the limiter function of Van Albadaet al. [26].

Higher-order algorithm. The higher-order algorithm uses the following operators to
approximate first derivatives [6]:

Interior (4th order),

δxqj = 1

121x
(−qj+2+ 8qj+1− 8qj−1+ qj−2); (19)

First interior node (3rd order),

δxqj = 1

61x
(−2qj−1− 3qj + 6qj+1− qj+2); (20)

Boundary (3rd order),

δxqj = 1

241x
(−11qj + 18qj+1− 9qj+2+ 2qj+3). (21)

The last equation is required only for the calculation of grid metrics. Elsewhere, the grid
metrics are evaluated using the same operators as the inviscid fluxes without numerical
dissipation.

The numerical dissipation is added as described in the earlier section on matrix dissipation.
It requires the same five-point stencil as the fourth-order centered-difference operator and, in
the absence of discontinuities, is third-order accurate. At near-boundary nodes, the following
operator is used,

1

1x
(−qj−1+ 3qj − 3qj+1+ qj+2). (22)

The viscous terms are in the general form

∂x(α j ∂xβ j ). (23)

The following fourth-order expression is used to calculate the∂xβ j term at half nodes,

(δxβ) j+1/2 = 1

241x
(β j−1− 27β j + 27β j+1− β j+2). (24)

Near boundaries, the following third-order expression is used,

(δxβ) j+1/2 = 1

241x
(−23β j + 21β j+1+ 3β j+2− β j+3). (25)
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The value ofα j+1/2 in Eq. (23) is determined using the fourth-order interpolation formula

α j+1/2 = 1

16
(−α j−1+ 9α j + 9α j+1− α j+2). (26)

Near boundaries, a third-order formula is used,

α j+1/2 = 1

8
(3α j + 6α j+1− α j+2). (27)

The complete operator is then

δx(α j δxβ j ) = 1

241x

[
α j−3/2(δxβ) j−3/2− 27α j−1/2(δxβ) j−1/2

+ 27α j+1/2(δxβ) j+1/2− α j+3/2(δxβ) j+3/2
]

(28)

in the interior, and

δx(α j δxβ j ) = 1

241x

[−23α j−1/2(δxβ) j−1/2+ 21α j+1/2(δxβ) j+1/2

+ 3α j+3/2(δxβ) j+3/2− α j+5/2(δxβ) j+5/2
]

(29)

near boundaries. The implementation of the Baldwin–Lomax turbulence model requires the
calculation of the vorticity at half nodes. This is accomplished using the operators given in
Eqs. (24) and (25).

The value ofQ̂ at a far-field boundary node is calculated as [3]

Q̂bc = 1

2
(Q̂∞ + Q̂ext)− 1

2
sign(Â)(Q̂∞ − Q̂ext) (30)

sign(Â) = Tκ sign(3κ)T
−1
κ , (31)

whereκ is chosen in the direction normal to the boundary,bcindicates the boundary value,∞
indicates values obtained from free-stream conditions, andextindicates values extrapolated
from the interior nodes of the mesh. The eigenvalues and eigenvectors are calculated from
the mean state,̂Qavg= 1

2(Q̂∞+ Q̂ext). The following second-order extrapolation operator
is used at the far-field boundary,

qj = 3qj+1− 3qj+2+ qj+3. (32)

The pressure at the airfoil surface is determined from a third-order approximation to
∂p/∂n= 0, which gives

p1 = 1

11
(18p2− 9p3+ 2p4). (33)

For an adiabatic wall,∂T/∂n= 0, and, when coupled with the assumption of zero pressure
gradient and the perfect gas law, this implies∂ρ/∂n= 0. Hence the density at the airfoil
surface is determined from an expression analogous to Eq. (33). Note that the assumption
that ∂p/∂n= 0 is not strictly correct. However, for aerodynamic flows at high Reynolds
numbers, the error introduced is very small. We have experimented with extrapolation of
pressure with no significant change in the solution. Furthermore, the error introduced is non-
ordered2 [21], and hence does not affect the conclusions from grid convergence studies.
The velocity is zero on the body surface.

2 Meaning that the error introduced does not vanish as the grid spacing tends to zero. Such an error cannot be
evaluated through grid convergence studies.
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For grids with a “C” topology, which are used exclusively in this study, the interpolation at
the wake-cut (wc) is computed to fourth-order using the data above and below the wake-cut as

qkwc =
1

6

(−qkwc+2+ 4qkwc+1+ 4qkwc−1− qkwc−2
)
. (34)

In order to preserve the accuracy provided by a higher-order solution, it is necessary
to use a higher-order integration technique in calculating forces and moments. This is
accomplished by fitting a cubic spline to the airfoil coordinates and the surface pressure and
skin friction distributions. An adaptive quadrature routine based on the two-point Gauss–
Legendre rule with a global error control strategy is then used to perform the integration [6].

Overall, other than the first-order numerical dissipation added near shock waves, these
approximations are all consistent with third-order global accuracy in space. However, it is
not clear that this can actually be achieved in the presence of grid and flow singularities.

3. TEST CASES AND GRIDS

We consider the following four test cases:

1. NACA 0012 airfoil,M∞= 0.16,α= 6◦, Re= 2.88× 106, laminar-turbulent tran-
sition at 0.05 and 0.8 chords on the upper and lower surfaces, respectively.

2. NACA 0012 airfoil,M∞= 0.16,α= 12◦, Re= 2.88× 106, laminar-turbulent tran-
sition at 0.01 and 0.95 chords on the upper and lower surfaces, respectively.

3. NACA 0012 airfoil,M∞= 0.7,α= 3◦, Re= 9.0× 106, laminar-turbulent transition
at 0.05 chords on both surfaces.

4. RAE 2822 airfoil,M∞= 0.729,α= 2.31◦, Re= 6.5× 106, laminar-turbulent tran-
sition at 0.03 chords on both surfaces.

These cases span a range of typical aerodynamic flows. Case 1 is a fully attached subsonic
flow, while Case 2 has a region of separated flow near the trailing edge on the upper surface.
Cases 3 and 4 are transonic flows with shock waves of moderate strength on the upper
surface. The transonic cases are from Holst [9]. Experimental data for Case 4 can be found
in Cook et al. [5] The measured coordinates for the RAE 2822 airfoil are used, as in
Maksymiuket al. [17], rather than the standard coordinates. Experimental data for Cases 1
and 2 can be found in Gregory and O’Reilly [8].

Table I is a summary of the grids used. All of the grids have a “C” topology. The distance
to the far-field boundary is 12 chords for all grids. While this is clearly a source of error3

[28] it is not adiscretizationerror, and hence will not affect our conclusions.4 All grids were
generated using an elliptic grid generator, such that the largest distance between nodes on
grid A is one chord (near the far-field boundary). Grid B was generated by removing every
second node in both coordinate directions from grid A, and grid C was similarly generated
from grid B. This technique produces a sequence of grids suitable for a grid convergence
study. We also show results for grid C2, which has additional grid nodes clustered near the
upper-surface shock wave for Cases 3 and 4. Grids C and C2 have a practical node density,
with under 14,000 nodes. Grids A and B are primarily for estimation of solution error.

3 The error incurred varies with the inverse of the distance to the outer boundary [21].
4 For accurate prediction of drag at high-lift conditions, a substantially larger distance to the far-field boundary

is recommended [28].
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TABLE I

Summary of Grids

Leading edge Trailing edge
Off-wall spacing clustering clustering

Grid Dimensions Points on airfoil (×10−6) (×10−3) (×10−3)

A 1057× 193 801 0.23 0.1 0.5
B 529× 97 401 0.53 0.2 1.0
C 265× 49 201 1.2 0.4 2.0
C2 277× 49 213 1.2 0.4 2.0

4. RESULTS AND DISCUSSION

The lift, pressure drag, and friction drag coefficients for the four test cases computed on
grids A, B, and C are shown in Figs. 1–4. They are plotted versus 1/N, whereN is the
number of grid nodes. The discretizations are labelled as follows:

1. Matrix, matrix artificial dissipation with second-order centered differences;
2. CUSP, CUSP scheme;
3. Roe, third-order upwind-biased scheme for the inviscid terms with second-order

centered differences for the viscous terms;
4. Higher-order, matrix artificial dissipation with fourth-order centered differences

for the inviscid and viscous terms.

It is important to note that the higher-order discretization uses the same numerical dissi-
pation scheme as the second-order discretization labelled “Matrix.” For the second-order
discretization, the truncation error from the second-order centered difference approxima-
tions to the inviscid and viscous flux terms is of lower order than the third-order numerical
dissipation. For the higher-order scheme, the third-order numerical dissipation is the leading
error term in the interior discretization. Finally, the first-order numerical dissipation is not
used for the subsonic cases. With the matrix dissipation scheme, this is accomplished by
settingκ2= 0; with the CUSP and Roe schemes, the limiters are turned off.

All four discretizations produce very similar results on grid A, as expected. Hence the
grid A results provide a reference solution for estimating the numerical error on grid C.
A reasonable goal is to achieve a numerical error in lift and drag components of less than
two percent on grid C. One might argue that this is unnecessarily stringent, given that
errors in drag associated with modelling of laminar-turbulent transition and turbulence can
be significantly greater than two percent. However, we would like the numerical error to
be substantially less than the physical model error, both to permit accurate assessment of
physical model error and to avoid compounding these errors.

With a few exceptions, the numerical errors in the lift coefficient are below two percent
on grid C. All of the methods appear to be roughly equally accurate. Closer inspection of
the pressure distributions shows that this is not the case, as we shall see later. The errors in
the drag components computed on grid C are much larger. In order to get a true picture of
solution accuracy, it is important to examine the individual drag components, pressure, and
friction drag, since the errors in these components are often of opposite sign. For the two
subsonic cases, shown in Figs. 1 and 2, the errors in pressure, and friction drag produced by
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FIG. 1. Grid convergence for Case 1, (a)Cl . (b) Cdp . (c) Cd f .



694 ZINGG ET AL.

FIG. 2. Grid convergence for Case 2, (a)Cl . (b) Cdp . (c) Cd f .
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FIG. 3. Grid convergence for Case 3, (a)Cl . (b) Cdp . (c) Cd f .
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FIG. 4. Grid convergence for Case 4, (a)Cl . (b) Cdp . (c) Cd f .
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FIG. 5. Boundary layer velocity profiles on the upper surface at 85% chord, Case 2.

the higher-order scheme on grid C are consistently below two percent and are significantly
smaller than those produced by the other three schemes. In fact, the errors produced by
the higher-order scheme on grid C are generally smaller than those produced by the other
schemes on grid B, which has four times as many nodes.

One cannot draw any general conclusions from these figures with respect to the asymptotic
behavior of the error of the various discretizations. In principle, a second-order discretiza-
tion will produce a linear variation of the force coefficients with 1/N. Although some of
the figures, such as the pressure drag for the subsonic cases, suggest second-order conver-
gence rather strongly, others clearly do not. Furthermore, there is no concrete evidence that
the higher-order algorithm leads to a higher-order asymptotic convergence rate in the pres-
ence of the trailing edge singularity. Hence our emphasis is on the actual error obtained on
grid C, as determined by comparison with grid A. With this criterion, the benefits of the
higher-order discretization are substantial.

Figure 5 shows the boundary-layer velocity profiles at 85% chord on the upper surface
for Case 2 computed on grid C. The grid A results,5 which provide an accurate reference
solution, show every fourth grid node. The higher-order scheme is superior to the other
schemes, with very little error even on grid C. It achieves a low numerical error despite
using the same numerical dissipation scheme as is used by the matrix scheme, demonstrating
that the third-order numerical dissipation is not a major source of error on grid C. Hence
the numerical dissipation scheme is achieving its goal of producing stability and damping
under-resolved modes without introducing significant error.

For the transonic cases, shown in Figs. 3 and 4, the higher-order discretization produces
the smallest pressure drag error on grid C, but it is nevertheless well in excess of two percent.
One source of this error is the first-order dissipation introduced near the shock wave. All
of the schemes produce lower pressure drag errors when run without any limiting, i.e.,
without any first-order dissipation, but visible oscillations result at the shock, and algorithm
robustness can be compromised. Another possible source of error with the matrix dissipation

5 On grid A, the various discretizations produce solutions which are indistinguishable on the scale shown.
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FIG. 6. Pressure coefficient for Case 4.

scheme (thus affecting the higher-order algorithm) is the requirement of nonzero values of
Vl and Vn in Eq. (4) for transonic flows. However, given that the error in friction drag
obtained using the higher-order discretization is very small, consistent with the subsonic
cases, it is unlikely that the nonzero values ofVl andVn are contributing significantly to
the error in pressure drag. Adding nodes near the shock, as in grid C2, does not reduce
the pressure drag error significantly. We will see later that adding grid nodes in the normal
direction, possibly in order to better resolve the small separation bubbles seen at the shocks,
is more critical for these cases. Figure 6 shows details of the pressure coefficient on the
upper surface of the airfoil for Case 4 computed on grid C2. For the grid A solution, every
second grid point is plotted. The higher-order discretization produces a significant reduction
in error over the first 20% chord.

Figure 7 shows the values of the Koren limiter, Eq. (17), and the Nemec–Zingg modifica-
tion of the Jameson limiter, Eq. (9), for Case 4, grid C. In both cases, the limiter is primarily
active only near the upper-surface shock, as desired, although the Koren limiter is triggered
slightly near the leading and trailing edges. In general, it is a worthwhile exercise to generate
such plots in order to verify that appropriate parameter values have been selected. For ex-
ample, as the value ofK is reduced in Eq. (17), the limiter begins to trigger in many regions
far from the shock wave, and hence the solution becomes polluted by excessive first-order
dissipation. A theoretical basis for determiningK would be of significant benefit.

For the subsonic cases, the higher-order algorithm generally produces a numerical error
of less than two percent in the lift, pressure drag, and friction drag coefficients on grid C,
which has 12,985 nodes. However, for the transonic cases, the error in the pressure drag
exceeds two percent on grid C. We now revisit the transonic cases using an additional family
of grids (designated A3, B3, and C3), generated in the same manner as the previous grids,
whose properties are summarized in Table II. These grids are designed specifically for the
transonic cases, with increased node density in the normal direction and more nodes on the
upper surface than the lower surface (but no clustering at the shock). Grid C3 has 17,485
nodes, which is 35% more than grid C, but far fewer than grid B. Furthermore, for all of the
discretizations, we add the first-order numerical dissipation at the shock in the streamwise
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FIG. 7. (a) Limiter values for Case 4, Koren limiter. (b) Limiter values for Case 4, Nemec–Zingg modification
of Jameson limiter.

direction only, which also reduces the errors. The results achieved on grid A3 are very close
to those on grid A, providing further evidence that the numerical error is very small on such
dense grids. Tables III and IV show the lift, pressure drag, and friction drag coefficients
computed using grid C3 for Cases 3 and 4, respectively. In addition, the tables show the

TABLE II

Additional Grids for Transonic Cases

Leading edge Trailing edge
Off-wall spacing clustering clustering

Grid Dimensions Points on airfoil (×10−6) (×10−3) (×10−3)

A3 1073× 257 849 0.23 0.1 0.25
B3 537× 129 425 0.53 0.2 0.5
C3 269× 65 213 1.2 0.4 1.0



700 ZINGG ET AL.

TABLE III

Errors for Case 3, Grid C3

Algorithm Cl %Cl Cdp %Cdp Cd f %Cd f

Matrix 0.5135 0.7 0.009058 5.2 0.004776 4.0
CUSP 0.5053 0.9 0.008885 3.2 0.004714 5.2
Roe 0.5078 0.4 0.008772 1.9 0.004723 5.0
Higher-order 0.5122 0.4 0.008719 1.3 0.004970 0.06

Note.The columns labelled % show the magnitude of the percent error relative to the values computed using
the higher-order algorithm on grid A3, which areCl = 0.5100,Cdp = 0.008609,Cd f = 0.004973.

magnitude of the percent error relative to the higher-order results computed on grid A3,
which are given in the figure captions. The higher-order algorithm produces much less than
2% error in all quantities, while the other algorithms produce errors between 3 and 5% for
the drag components.

In order to examine the relative importance of the higher-order treatment of the viscous
fluxes, we have run the higher-order algorithm with lower-order viscous terms. Although
the results vary from case to case, the higher-order viscous terms generally account for
roughly 10% of the error reduction associated with the higher-order discretization relative
to the second-order scheme with matrix dissipation. For the friction drag in the transonic
cases, the contribution from the higher-order viscous terms is over 25%. Using case 2 as an
example, the second-order matrix algorithm produces an error in pressure drag on grid C of
roughly 47% in comparison with the grid A solution. Using the higher-order algorithm, this
error is reduced to 1.3%. If lower-order approximations are used for the viscous terms, the
error increases to 4.6%. Although the higher-order viscous terms account for a relatively
small fraction of the overall error reduction, they reduce the error by a factor greater than
three in this example.

In the higher-order algorithm, the treatment of the inviscid terms, including the grid
metrics, accounts for the largest portion of the error reduction. The present implementation
of the third-order upwind scheme does not produce comparable benefits, largely because
second-order approximations are used for the grid metrics. Our results indicate that fourth-
order metric approximations should be used with the third-order scheme, consistent with
the fact that the skew-symmetric portion of the third-order upwind-biased operator is a
fourth-order centered difference operator. The higher-order grid metrics and first-derivative

TABLE IV

Errors for Case 4, Grid C3

Algorithm Cl %Cl Cdp %Cdp Cd f %Cd f

Matrix 0.7984 0.4 0.008863 5.2 0.005019 3.8
CUSP 0.7886 1.6 0.008718 3.5 0.004978 4.6
Roe 0.7979 0.4 0.008754 3.9 0.004988 4.4
Higher-order 0.8023 0.1 0.008517 1.1 0.005223 0.1

Note.The columns labelled % show the magnitude of the percent error relative to the values computed using
the higher-order algorithm on grid A3, which areCl = 0.8013,Cdp = 0.008425,Cd f = 0.005217.
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FIG. 8. (a) Residual convergence history for Case 1, grid C. (b) Residual convergence history for Case 3,
grid C.

approximation used in calculating the velocity derivative at the surface also account for much
of the reduction in friction drag error. The second-order three-point one-sided difference
operator typically used is particularly susceptible to error from grid stretching.

Finally, we consider the cost of the various discretizations studied. In terms of the number
of iterations required to achieve a steady state on grid C, the discretizations perform similarly,
with some variation from case to case, as shown in Fig. 8. All cases are converged to within
plotting accuracy for all results shown. In cases where the residual does not reach machine
zero, the cause is either the turbulence model6 or the limiter.7 Table V shows the relative cost
of a single evaluation of the right-hand side for each discretization, excluding the boundary-
condition calculation. The first column shows the relative cost for a subsonic case, while the
second column shows a transonic case, with the results for the matrix scheme normalized
to unity in each case. Although these relative costs should not be considered definitive
(with more effort, each algorithm could be programmed more efficiently), they provide a
rough indication which is consistent with expectations. The higher-order algorithm costs

6 If the turbulence model is frozen, full convergence is obtained.
7 Freezing the limiter produces convergence to machine zero.
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TABLE V

Relative Cost of a Right-Hand-Side Evaluation

Algorithm Subsonic Transonic

Matrix 1 1
CUSP 0.80 0.83
Roe 1.13 1.32
Higher-order 1.06 1.06

only 6% more than the lower-order algorithm with matrix dissipation. The high cost of the
Roe scheme for the transonic case is associated with the use of a separate limiter for each
variable, which can be avoided for the cases considered here. The differences in cost per
iteration are somewhat smaller than those for a right-hand-side evaluation, since the setup
and solution of the left-hand-side is roughly equivalent for each algorithm. Overall, these
cost differences per right-hand-side evaluation are quite small, and since the higher-order
algorithm produces equivalent accuracy on a grid with several times fewer nodes, its overall
computational expense needed to achieve a given level of accuracy is by far the least of the
schemes considered.

5. CONCLUSIONS

Detailed grid convergence studies have been performed in order to compare the accuracy
of several modern spatial discretizations, specifically in the context of subsonic and transonic
turbulent flows over airfoils. The following conclusions can be drawn from the results:

1. The present implementation of the third-order upwind-biased scheme for the invis-
cid fluxes produces little improvement over the second-order schemes. The results indicate
that fourth-order approximations of grid metric terms should be used with the third-order
upwind-biased scheme.

2. Matrix dissipation, the CUSP scheme, and flux-difference splitting all lead to com-
parable accuracy. When coupled with second-order schemes, the numerical dissipation
introduced using these approaches is not a major source of error. This is clearly shown
by the accuracy of the higher-order algorithm, which includes the same matrix numerical
dissipation as the second-order matrix algorithm studied.

3. The accuracy associated with the popular approach to flux limiting exemplified
by the Koren limiter is highly dependent on a parameter introduced to prevent excessive
triggering of the limiter. Depending on the choice of this parameter, too much or too little
limiting can be obtained. We have suggested a value for this parameter which is optimal for
the two transonic cases considered, but it is not known whether this value is optimal for other
flow cases and grids. Similar comments apply to the approach used in the Nemec–Zingg
modification of the Jameson limiter, but it is less sensitive to the value of the parameter.

4. Using the higher-order discretization, less than 2% numerical error in lift and drag
components can be obtained on grids with less than 13,000 nodes for subsonic cases and
less than 18,000 nodes for transonic cases. Since the cost of the higher-order discretization
per grid node is comparable to that of the other discretizations, it is capable of producing
accurate solutions with a substantial reduction in computing expense.
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Once the numerical error is reduced to below 2% on practical grids, one must give
serious consideration to other sources of error, including the thin-layer approximation and
the treatment of laminar-turbulent transition. Finally, it would be interesting to see the
relative accuracy of discretizations for unstructured grids assessed using grid convergence
studies similar to those presented here.
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